杏彩平台官网

杏彩体育官网app杏彩平台官网

杏彩体育官网

杏彩平台官网

产品中心PRODUCT

杏彩平台官网

0531-87920426

产品中心
您的位置:首页 > 产品中心

杏彩平台官网来论|农村地区已逐渐成为我国水污染防治攻坚战的主战

杏彩平台官网

  质地优良的湖泊、水库承载着国人对美好生活的向往,是美丽中国不可或缺的重要拼图。近些年来,我国不断加大环境保护力度,生态环境的各个要素都有非常显著的改善,但与大江、大河的水质相比,全国湖泊、水库水质...

立即咨询
  • 产品详情

  质地优良的湖泊、水库承载着国人对美好生活的向往,是美丽中国不可或缺的重要拼图。近些年来,我国不断加大环境保护力度,生态环境的各个要素都有非常显著的改善,但与大江、大河的水质相比,全国湖泊、水库水质类别现状要低很多。

  一方面,我国湖泊、水库的水质标准要比河流严苛很多(主要指湖泊、水库总磷的标准限值,比同类级别的河流严格2到4倍),另一方面,在当前的水环境工作实践中,还存在对湖库生态系统和环境保护特点,在认识上还不够统一,这不仅影响了我国水环境保护工作的决策,还导致一些地方湖泊治理工作事倍功半。

  就水环境常规污染物而言,污染防治攻坚战的主战场应该从城市转为农村,从工业转为农业,只有解决好农村地区水污染物排放问题,我国的水环境才能发生根本性的质变。

  基于湖库污染零维模型,我认为让湖库的换水周期(n)小一点,让水体的自净能力(k)大一点,湖库才有生路。

  我国当前水质较差的江河湖泊中,绝大部分是总磷超标。据《全国生态环境统计年报》(2022年),全国总磷排放量为34.6万吨。其中,工业源(含非重点)废水中总磷排放量为0.2万吨,集中式污染治理设施废水(含渗滤液)排放为0.005万吨,农业源27.7万吨,生活源6.6万吨。

  从这个数据来看,我国工业废水和城市生活污水处理厂排放的总磷合计仅0.205万吨,占比仅0.7%,说明在污染治理方面,能收集到的含磷污废水处理已经达到极限,再进一步深度挖潜,对全国水环境总体而言,意义不大。

  而农业源和生活源合计排放量达到34.3万吨,占比超过99%。其中生活源6.6万吨指的就是未被收集处理的生活污水,考虑到当前我国全部城市和部分乡镇都已建成生活污水处理厂,因此这6.6万吨生活源基本上就是指农村居民生活污水。从这个意义上讲,我国今后水环境总体状况,完全取决于来自农村地区的污染,包括农业生产尾水和农村居民生活污水。

  这个推论是基于我国当前污染治理水平和污染物排放情况得出的,是生态环境工作发生历史性转变后形成的新形势,与过去我国以工业污染和城市污水污染为主的局面是完全不同的。因此,就水环境常规污染物而言,污染防治攻坚战的主战场应该从城市转为农村,从工业转为农业。只有承认并顺应这种形势的变化,我国水环境工作才能发生质变。

  以湖北省为例,全省总磷年排放量约2.5万吨,与其他省份一样,基本来自农村地区。2.5万吨总磷,如果按0.1mg/L稀释(这个数值可以让湖库直接恶化到劣Ⅴ类),需要2500亿立方米的水。而湖北省全省地表水资源量约为1800亿立方米,其中大中型水库(含三峡库区和丹江口水库)蓄水总量约为480亿立方米,13个典型湖泊蓄水总量约为24亿立方米。从数据上来看,来自农村地区的污染,即便是水资源相对较丰富的湖北省来说,也是难以承受之重。

  总体来说,农村地区污染特点就是量大面广浓度低,相对于城市和工矿企业而言,农村地区污染是分散源、面源。就其中的生活源(主要指农村居民生活污水和零散畜禽养殖废水)来说,理论上是可以参照城镇生活污水一样,进行收集并处理,但实际上是极难做到的,不仅工程投资巨大,而且规模小而众多,维持正常运行更是极为困难。再看农业源,研究资料显示,我国农田灌溉水有效利用系数普遍略高于50%,这意味着有近一半的农田灌溉水还是要回到河流或湖库,化肥的流失情况也可想而知。

  尽管我们在农业面源控制方面做了很多艰苦的努力,比如测土配方、农药化肥减量化、高标准农田建设、科学滴灌技术推广等等,但很显然,农业源是不可收集并处理的。考虑到我国的国情,人口众多粮食压力大,必须承认,农村地区的污染物总量,将在很长一段时间都会维持在目前的水平。

  从以上分析,不难得出一个结论:农村地区已逐渐成为我国水污染防治攻坚战的主战场,农村地区的水污染物是不可收集并处理的,不可控的巨量产生情况将长期存在;只有解决好农村地区水污染物排放问题,我国的水环境才能发生根本性的质变。

  仿效城镇生活污水处理和工业点源的治理模式,通过工程的方式削减污染物,这是一种直线思维模式,很显然是劳而无功的,也是没有必要的。我们必须要转换思维方式,农村地区的水污染物,主要是含碳、氮、磷的常规污染物,对于水环境来说,它们是“讨厌”的污染物,但对于农作物来说,它们是“受欢迎”的肥料。另辟蹊径,如果能将农村地区的污水控制在农产区,尽可能地循环利用,这可能才是我国水环境发生质变的根本出路。这个蹊径的核心就是“湖泊和水库”。

  结合水环境零维模型,有必要认识一下湖泊和水库生态环境的特点。湖库水环境零维模型揭示一个库容为V的湖库,其污染物浓度C是如何随补给水变化而变化的。该模型假设该湖库的补给水源为流量为Q的河流,河水污染物浓度为C河;湖泊的自净系数为K(直观的理解就是湖泊一年内能将污染物减少多少百分比,是一个0~1之间的常数,通常可以指征水生态系统的好坏。模型中用的自净系数k与K还存在一个数学换算的关系,k=-ln(1-K)),湖库的污染物初始浓度为C0,那么:

  当前水环境保护工作中,绝大部分注意力都放在C河上,即尽可能地降低补给水的污染物浓度。事实上,结合模型分析,对于湖泊和水库而言,n和k更为重要。

  经模拟计算,绝对纯净的湖库经过0.7个换水周期(对于一年换一次水的湖库来说,就是约8个半月),污染物浓度就会上升到入湖河流的一半;3个换水周期后就非常接近入湖河流的浓度。这意味着,即便补给水源是水质不错的Ⅲ类河流(总磷≤0.2mg/L),流入湖库后就变为Ⅴ类水体;哪怕补给水是极其优良的Ⅱ类水质,情况也好不了太多,湖库最大可能呈Ⅳ类水体,其功能最好的表现也只是“非直接接触”的娱乐用水。

  通常情况下,同样的总磷浓度,湖库的水质类别会比河流劣约2个档。这就是为什么当前我国的河流大部分是Ⅱ、Ⅲ类的不错形势下,湖泊、水库多数在Ⅳ类及以下的主要原因。一个很有代表性的例子是湖南省的洞庭湖,该湖主要的补给水是长江干流(Ⅱ类),入湖后按照湖库标准评价为Ⅳ类,环境表现为中度富营养化。

  不要以为Ⅴ类湖库与Ⅲ类河流在污染物(总磷)浓度值上差不多,就认为它们的环境表现也差不多。事实上,它们的环境表现就跟它们的水质类别的差别一样大,Ⅲ类水体会给人一种清爽、愉悦的感觉,而V类水体则在透明度、藻腥味、颜色等理化特征上,会给人明显不适的感觉。例如,湖北省的清江干流水质非常优秀,总体为Ⅱ类水质,由于水利水电工程的开发,清江干流的局部河汊水流变缓,形成类湖库型的水文特征,早些年就曾发生过“水华”事件,大量呈棉絮状的硅藻短时间内爆发式生长,场面非常壮观。

  “n”变小,容易形成“静水”水文特征,给藻类的滋生创造条件,因此,很多地方在治理湖库生态环境问题时,自然而然想到的第一个办法就是给湖泊“换水”,将“n”做大。通过模型,我们假设用Ⅲ类河流给劣Ⅴ类湖库“换水”,看看这样做会有多大效果。由于Ⅲ类河流和劣Ⅴ类湖库总磷污染物浓度是差不多,因此这样做其实对改善湖库水质类别帮助不大,对于其他污染因子,如化学需氧量等,还是有些许作用。湖南省常德市安乡县为了修复珊珀湖,投资超过6亿元实施环湖截污、底泥清淤,并大量引澧水入湖,确保珊珀湖水每月一次大循环(即n大于12),整治工作不可谓不彻底。但效果呢?也只是将珊珀湖从劣Ⅴ类“改善”到Ⅳ类。武汉市实施“江湖联通”工程,加大了城市内湖的换水频次,城市内湖水质有了一定程度改观,湖水腥臭味明显降低,“水华”暴发程度也明显减弱,但水质也只能维持在Ⅳ、Ⅴ类水准。

  河流对湖库的水量补给,本质上只是个物理稀释过程,并不会减少污染物。考虑到河流和湖库总磷标准上的差异,那些以“生态补水”的名义加大湖库的换水频次,并不能显著改善湖库的水质类别,甚至对改善湖库生态环境保护是“南辕北辙”。湖库的水污染问题治又治不了,换水也不行,是不是对湖库的保护问题绝望了?

  在模型公式中,k总是与换水周期n出现在相同的位置。与n相比,k总体上要小很多,这是不是意味着相对于n,k就没那么重要呢?

  我们设想一下,让n=0,关闭湖库的补给水,让湖泊“自生自灭”,只让k发挥作用,看看会发生什么情况。此时,

  。假设这个湖库总磷初始浓度C0=0.2mg/L,Ⅴ类标准的上限。当K=0.5时(这很容易,一般水草茂盛的湖库都可以达到这样净化能力),1年后湖库总磷浓度通过自净会降到0.1mg/L,达到Ⅳ类标准;2年后降到0.05mg/L,达到Ⅲ类标准;3年后降到0.025mg/L,达到Ⅱ类标准;4年零4个月后,湖库总磷浓度将降到0.01mg/L以下,达到Ⅰ类标准。如果K=0.7,湖库水质改善速度将会更快:7个月后达到Ⅳ类标准,13个月后达到Ⅲ类标准,18个月后达到Ⅱ类标准,30个月后达到Ⅰ类标准。K要是能培育到0.9,湖库水质改善将会神速:不到4个月就提升到Ⅳ类标准,7个月就达到Ⅲ类标准,不到1年就提升到Ⅱ类标准,15个月后达到Ⅰ类标准。

  从模型分析来看,湖库的自净能力实在是太重要了。湖库的换水周期n,实际上反映的是湖泊上游来水的多少,它对湖泊的净化能力是纯物理过程,比较单一;而且净化效果是有下限的,下限就是补给河流的浓度;同时,它的可塑性不大,湖库的换水周期跟周围的水文环境息息相关,没有水利工程的改变它是不会有大变化的。与n相对应的是,湖库的自净能力包含物理、化学和生化过程,取值范围从0到1,可塑性极强,而且理论上处理效果是无下限的,可以将污染物降解到0。如果说换水周期反映的是湖泊的“家底够不够厚实”,那么自净系数代表的是湖泊“长得够不够强壮”,反映的是湖泊生态系统的生命力。对于湖泊污染物浓度而言,n能带来量变,但k能产生质变。纵观我国水质最为优秀的几个湖泊,如青海湖、纳木错、云南抚仙湖等,都有一个共同的特点:除了补给水非常优良外,湖泊的水草系统非常发育,也就是说湖泊的生态系统非常旺盛,自净能力非常强壮。

  仍以总磷初始浓度C0=0.2mg/L的Ⅴ类湖库为例,补给水源为C河=0.2mg/L的Ⅲ类河流,假设K=0.7,当n=0.1时,7个月后,水质改善到Ⅳ类标准;4年后稳定在0.016mg/L,为Ⅱ类水质。n=0.3时,8个月后总磷浓度降到0.1mg/L以下,之后稳定在0.04mg/L,水质改善到Ⅲ类。n=0.5时,9个月后总磷浓度降到0.1mg/L以下,之后稳定在0.06mg/L,水质Ⅳ类。n=1时,14个月后总磷浓度降到0.1mg/L以下,之后稳定在0.091mg/L,水质Ⅳ类。n=3时,总磷浓度稳定在0.14mg/L,水质Ⅴ类,污染物浓度有所降低,但水质类别没有改善。

  从模型分析情况来看,加大湖库的补给水量,对湖库水质改善是有害的。这一点,与很多人的直觉,以及当前在工作实践中惯用做法,是完全矛盾的。一些地方为了改善湖库水质,加大所谓的“生态补水”力度,虽然能起到一定的“立竿见影”效果,但从长远来看,无异于“饮鸩止渴”。有些地方,甚至在河道补种水草,试图用这种方法降解河流中的污染物,实际上效果是不佳的。

  从国家治理层面,有必要对当前盛行的“生态补水”做法,进行审慎的科学评估,如果真的像模型分析的结果那样,加大湖库换水频次不利于湖库的生态环境修复,就应当尽快制止。湖泊是一个静水生态系统,过高的换水频率,可能会改变湖泊的基本属性。

  从模型分析的结果来看,n小于0.1,即每年湖库更新不超过10%的水,从环境表现上来看是可以接收的;新疆天池、喀纳斯湖、马湖、扎陵湖、博斯腾湖、鄂陵湖、白洋淀、兴凯湖、泸沽湖、长白山天池、抚仙湖等知名湖泊,换水周期都超过10年,水质明显要好于其他湖泊。当n大于3,湖库的生态修复工作没有任何意义;洞庭湖、鄱阳湖、高邮湖、淀山湖、洪泽湖、南漪湖、石臼湖、骆马湖。


杏彩平台官网 上一篇:环境商会:建议强化污水厂上游进水监督及工业企业纳管 下一篇:中国工业遗产保护名录第一批名单公布含京张铁路等百个

立即留言,即可获得免费水处理解决方案

杏彩平台官网app(杏彩·中国)杏彩体育官网